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We present a mesoscopic hydrodynamic description of the dynamics of colloidal suspensions. We consider
the system as a gas of Brownian particles suspended in a Newtonian heat bath subjected to stationary non-
equilibrium conditions imposed by a velocity field. By means of a generalized Fokker-Planck equation, we
obtain a set of coupled differential equations for the local diffusion current and the evolution of the total stress
tensor. We find that the dynamic shear viscosity of the system contains contributions arising from the finite size
of the particles.
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I. INTRODUCTION

Due to the theoretical and industrial importance of colloi-
dal suspensions, the rheological properties of these systems
have been the subject of intense investigations by using a
variety of experimental and theoretical methods �1–5�.
Among others, the experimental techniques used to study
these systems are neutron and light scattering, and ultrasonic
absorption �6–8�. From a theoretical point of view, nonequi-
librium statistical mechanics and thermodynamics
�1–4,9–12�, mode-coupling formalism �13�, and computer
simulations �14–18� are current techniques used to analyze
the dynamics of these systems. Particular interest has been
put on the behavior of the frequency-dependent shear viscos-
ity of semidilute suspensions of hard spheres in different
situations involving direct or hydrodynamic interactions
�6,7�.

In this paper, we present a mesoscopic hydrodynamic de-
scription of the dynamics of colloidal suspensions subjected
to stationary nonequilibrium conditions imposed by a veloc-
ity field. In particular, we analyze the behavior of the dy-
namic viscosity due to its importance in reflecting the micro-
structure details into the relaxation of the system under the
conditions imposed by the applied flow. At the mesoscopic
level, the contributions of the suspended phase to the dynam-
ics of the whole system can be described by using a Fokker-
Planck equation �10,19–21�. This equation has been previ-
ously obtained on the grounds of irreversible
thermodynamics in the dilute regime �10,19�. However, it is
important to stress that similar equations have been derived
in the context of different approximations ranging from the
kinetic theory of gases to the projector operator formalism
�20–22�. From this Fokker-Planck equation, we calculate a
set of evolution equations for the moments of the distribution
function. Then, by using the fluctuating hydrodynamics ap-
proach we obtain a frequency-dependent correction to the
dynamic viscosity of the system that accounts for memory
effects �23,24�.

The paper is organized as follows. In Sec. II, we summa-
rize the derivation of the Fokker-Planck equation and carry
out the hydrodynamic description of a gas of Brownian par-

ticles. In Sec. III, we derive the dynamic viscosity of the
system and present numerical results. Finally, Sec. IV is de-
voted to conclusions.

II. KINETIC AND HYDRODYNAMIC DESCRIPTION
OF A GAS OF BROWNIAN PARTICLES

We will analyze the dynamics of a system consisting of a
“gas” of Brownian particles of mass m suspended in a New-
tonian heat bath subjected to stationary nonequilibrium con-
ditions imposed by a stationary flow v�0�r��.

The usual starting point to describe the dynamics of this
system is the N-particle distribution function and its corre-
sponding multivariate Fokker-Planck equation. In this equa-
tion, microscopic expressions for the hydrodynamic and di-
rect interactions must be introduced. In the semidilute
regime, for example, one must introduce the Oseen tensor
and the two-particle interaction potential. At higher concen-
trations, the subsequent approximations may, in general, con-
sider the Rotne-Prager tensor and the three-particle �or
higher� interaction potential. It is clear that this approach
constitutes an N-body problem hard to solve by analytical
methods �25,26�.

Here, we will follow an alternative approach to the prob-
lem in terms of a mean-field approximation in which the
difficulties of the N-body problem are avoided. This approxi-
mation, based on the one-particle distribution function, al-
lows one to make some analytical progress when calculating
the hydrodynamic equations, despite the fact that the explicit
dependence of the transport coefficients on frequency and
wave vector and the form of the direct interactions are a
priori unknown. However, by assuming in first approxima-
tion that the transport coefficients appearing in the hydrody-
namic equations are constants, we may use the well estab-
lished formalism of fluctuating hydrodynamics to obtain the
explicit expressions for the corrections to the transport coef-
ficients as a function of the frequency and the wave vector
�23,24,27�.

According to this, at the mesoscopic level the dynamics of
the dilute Brownian gas can be described in terms of a
single-particle local probability distribution P�r� ,u� , t� de-
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pending on time t and the instantaneous position and velocity
of the Brownian particle r� and u� . This distribution function
obeys the continuity equation

�

�t
P + �� · �u�P� = −

�

�u�
· �PV� u�� , �1�

where V� u� is a streaming velocity in u� space. The explicit

form of V� u� can be obtained from the entropy production of
the system, after assuming the validity of the hypothesis of
local equilibrium in phase space and using the rules of me-
soscopic nonequilibrium thermodynamics �19,28�. Then, en-
tropy production can be calculated from the nonequilibrium
entropy functional �27�

�s�r�,t� = − kB� P�u� ,r�,t�ln
z

zle
du� + �sle�r�� , �2�

where kB is Boltzmann’s constant and �s�r� , t� and �sle�r�� are
the nonequilibrium entropy per unit volume and the local
equilibrium entropy per unit volume, respectively. Moreover,
we have introduced the fugacities z= P�r� ,u� , t�A��� and zle

=exp���le− 1
2 �u� −v�0�2�m /kBT� with �le the chemical poten-

tial at a local equilibrium and ��r� , t�=m� P�u� ,r� , t�du� the
mass density field of the Brownian gas. Finally, A���, related
with the excess of osmotic pressure of the system, represents
the activity coefficient that introduces the interactions among
Brownian particles �27�.

After calculating the entropy production using Eq. �2�,
identifying forces and currents, and using the linear-law
scheme of nonequilibrium thermodynamics �29�, one finds
that the distribution function P�r� ,u� , t� obeys the Fokker-
Planck equation

�

�t
P + �� · �u�P� − ��	 kBT

m
ln A���
 ·

�P

�u�

=
�

�u�
· 	��

�
· �u� − v�0�P +

kBT

m
��
�

·
�P

�u�

 , �3�

where kBT is the thermal energy �assumed constant�. In the

general case, the friction tensor ��
� �r� , t� must contain the av-

erage effect of hydrodynamic interactions. It is related to the

Onsager coefficient ��
��r� , t� through ��

�
=��

�
+��� ·�� v�0, in which the

Onsager coefficient ����r� , t� accounts for the effects of the
force exerted by a fluid on a particle of finite size according
to the Faxén theorem �10,28�.

It is important to notice that v�0 is the stationary solution

of the Navier-Stokes equation �0v�0�� v�0=−�� ·P0 for the heat
bath, with the appropriate boundary conditions on the surface
of the colloidal particle, and �0 is the constant density of the
bath.

Equations similar to Eq. �3� have been derived in the con-
text of different approximations; see, for example, Refs.
�10,20,21,27,28�. From Eq. �3�, one may calculate a set of
evolution equations for the moments of the probability dis-
tribution, giving the “hydrodynamic” description of the sys-
tem �10,27�. After taking into account the usual definitions

for the hydrodynamic-like fields—mass density ��r� , t�, ve-
locity v��r� , t�, and pressure tensor Pk�r� , t� �see Ref. �10��—the
first equation of this set corresponds to the conservation of
mass,

��

�t
= − �� · J�D, �4�

where the diffusion current J�D�r� , t�=�v� of the Brownian gas
satisfies the evolution equation �27,28�

J�D + ��
� −1 ·

DJ�D

Dt
= �v�0 −

kBT

m
��
� −1 ·

� ln A���
� ln �

�� �

− ��
� −1 · ��� · Pk�r�,t�� , �5�

where D /Dt is the material time derivative. The matrix of

relaxation times of the diffusion current is ���1���
� −1. Finally,

Eq. �5� contains the kinetic part of the pressure tensor Pk�r� , t�
of the suspended phase whose evolution equation is �10�

�Pk · ���2
−1�s =

kBT

m
����� − ��� · �� v�0�s −

1

2

D

Dt
Pk, �6�

where the symbol s stands for the symmetric part of a tensor

and ���2 is a matrix of relaxation times given by

���2 � ���� + �� v��−1, �7�

where we have neglected inertial terms proportional to � ·v� ,
an assumption valid for small density fluctuations �� /�	1.

The explicit expression for the pressure tensor can be ob-
tained by solving the set of differential equations �6�. How-
ever, in order to make analytical progress, let us assume the

approximation ���2���
� −1 · �1−��

� −1 ·�� v�� with 1 the unit tensor,
and which allows us to write Eq. �6� in the form

Pk �
kBT

m
�1 − �D�� 0� · ��� v� + ���� · �� v�0�†��s

−
1

2
����� −1�† ·

D

Dt
Pk
s

, �8�

where the † represents the transpose, we have defined the

diffusion coefficient D�
�

0=
kBT

m ��
� −1, and we assumed that the

leading term in the matrix of relaxation times is ��
� −1. Now,

the assumption of small density fluctuations implies that the
diagonal terms of Pk relax faster than the nondiagonal ones.
Therefore, Eq. �8� can be separated in the form Pk= pid1+L,
with L�r� , t� the traceless stress tensor. This separation leads
to the equations

pid =
kBTB

m
� and 2L + 	���� −1�† ·

D

Dt
L
s

= − 2�D�� 0� · ��� v�s + ���� · �� v�0�†��s. �9�

After substitution of Eqs. �9� into Eq. �5�, we obtain
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J�D = �v�0 − D�
� ��� · �� � − ��

� −1 · ��� · L� − ��
� −1 ·

DJ�D

Dt
, �10�

where we have defined the collective diffusion coefficient �8�

D�
� ��� = D�

�
0	1 +

� ln A���
� ln �


 = D�
�

0
�����

��
�11�

in accordance with Ref. �29�. Notice that in the limit of very
dilute suspensions, the activity coefficient vanishes and then
Eq. �10� recovers the expected form.

The evolution equations governing the behavior of the
hydrodynamic fields describing the whole suspension as an
effective medium can be obtained from Eqs. �9� and �10� by

adding the local diffusion current J� =J�D−�v�0 and the trace-
less part of the stress tensor of the heat bath given by

P0=−2
0��� v�0�0 with 
0 the Newtonian viscosity of the bath
�36�.

Thus, multiplying Eq. �9� by �0�−1, adding P0, neglecting
the convective term in the total time derivative, and using

the definition of J�, one arrives at the evolution equation
for the total traceless stress tensor of the suspension
Q0�P0+2�0�−1L,

Q0 + 	���� −1�† ·
�

�t
Q
0

= − 2�D�� 0�0�B
−1 · ��� J���0

− 2�
�� fs · ��� v�0��0, �12�

where �B=mn, with n=N /V the number density of colloidal
particles, and we have defined the effective viscosity coeffi-

cient 
�� fs of the whole suspension as


�� fs = 
0�1 + D�
�

0�0
0
−1 · �1 + ����� . �13�

Equation �13� contains corrections due to the finite size of

the particles through the coefficient ��� ��m /6kBT�a2��
�

·��
�

with

a the radius of the particle. The expression for ��� has been
obtained by taking into account the Faxén theorem �28�. In
deriving Eqs. �12� and �13�, we have assumed that terms of

the order D�
�

0J��−2 ·�� � may be neglected and that the coeffi-
cient of the first term at the right-hand side of Eq. �12� only
involves the average constant value of the density of the
suspended phase. This is consistent with the approximation
�� /�	1 used to derive Eq. �6�.

Now, by substituting J�D=J� +�v�0 into Eq. �10� and using
the Navier-Stokes equation, one can derive the evolution

equation for the local diffusion current J�,

���� + �� v�0� · J� +
DJ�

Dt
= − ��

�
· �D�� eff · �� �� + ��0

−1�� · Qqs
0 ,

�14�

where we have introduced the effective diffusion tensor

D�
�

eff = D�
� ��� − ��

� −1 · D�
�

0 · ���1 + ���� · �� v�0�0 + �−1��� J��0� ,

�15�

and Qqs
0 is the quasistationary form of the stress tensor of the

suspension whose explicit form follows from Eq. �12� for

times t� ��−1�ij. The dependence of D�
�

eff on the stress tensor
of the heat bath has been previously reported in Refs.
�10,20,22�. Now, in accordance with the assumption of low

velocity gradients, the term ��
� −1 ·�� v�0 can be neglected in Eqs.

�14� and �15�, and then we obtain the simplified equation

J� + ��
� −1 ·

DJ�

Dt
� − D�

� ��� · �� � + �B�0
−1��

� −1 · ��� · Q0� , �16�

where we have assumed that Q0 can be introduced instead of
Qqs

0 , and that the coefficient of the last term only involves the
average constant value of the density of the suspended phase
�B.

Equations similar to Eqs. �12� and �16� have been dis-
cussed by several authors from different macroscopic and
microscopic points of view in the context of polymer solu-
tions �31–34�. These equations incorporate viscoelastic ef-
fects into the description since they contain a term associated

with the relaxation of the involved quantities �Q0 ,J��, and
thus lead to more general constitutive relations than those for
Newtonian fluids. Equations �12� and �16� include tensor co-
efficients being then suitable to describe anisotropic systems
�4,35�. In the following section, we will use Eqs. �12� and
�16� to analyze the rheological properties of the system when
fluctuations of the suspended phase are considered.

III. THE DYNAMIC VISCOSITY

The dynamic viscosity coefficient of the suspension as a
function of the frequency � can be calculated by considering
the linearized fluctuating equations for the hydrodynamic
fields that follow from Eqs. �4�, �12�, and �16�. With this
purpose, we will assume that �=�B+
�, v�0=v�s+
u� , and
Q0=Q0

0+
Q0, with 
�, 
u� , and 
Q0 the deviations with re-
spect to the average values �B, v�s, and Q0

0.
Moreover, in this section we will consider the case of a

dilute suspension of particles. This assumption leads to a
simplification of the description in which both hydrodynamic
and direct interactions can be neglected. As a consequence,
the set of Onsager and transport coefficients become scalar

and, in the simplest approximation, constant: ��
�

=�1, ��� =�1,

��
�

=�1, and 
�� fs=
 fs1, and the activity coefficient A���=1,
thus simplifying the expression for the diffusion coefficient
to D���=D0.

Then, at first order in the deviations, from Eqs. �4�, �12�,
and �16� one obtains the following set of fluctuating hydro-
dynamic equations:

��
��
�t

= − �� · �
J�� − �� �
�� · v�s, �17�
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J� + �−1 D

Dt

J� = − D0�� 
� + �−1�B�0

−1�� · 
Q0, �18�


Q0 + �−1 D

Dt

Q0 = − 2D0�B�0

−1��� 
J��0 − 2
 fs��� 
u��0.

�19�

To obtain the corrections to the dynamic viscosity of the
suspension, Eq. �19� can be written in a more suitable form
by taking into account the separation v�0=v�s+
u� , which can
be interpreted as the sum of the unperturbed imposed veloc-
ity field v�s, in particular a shear flow, and 
u� is the corre-
sponding correction to the velocity field arising from the

presence of the particle, which is proportional to �� v�s �30�.
Following Ref. �30�, Eq. �19� can be written in the form


Q0 + �−1 D

Dt

Q0 = − 2D0�B�0

−1��� 
J��0 − 5�
 fs��� v�s�0,

�20�

where � represents the volume fraction occupied by the
Brownian particles in the whole system.

Now, by taking the Fourier transform of Eqs. �17�, �18�,
and �20� and solving for 
Q0 in terms of ik�
u� , and taking
into account that the frequency-dependent correction to the
viscosity �
�k� ,�� of the suspension is defined according to
the relation


Q0 = − i��
�k�,��k�
u��0, �21�

we find that

�
�k,�� �
5

2
�


 fs

1 − i��−1 −
D0�−1k2

�1 − i��−1�

, �22�

where, for simplicity, we have considered the case in which
k� = �k ,0 ,0�. Notice that the frequency dependence of the dy-
namic viscosity for semidiluted suspensions follows a
second-order continued-fraction expansion �7�. If we now
take into account the relation Q0=Q0

0+
Q0, we obtain that
the total viscosity of the suspension 
 fs+�
�k ,�� can be
written as


�k,�� � 
 fs�1 +
5

2
�

1

1 − i��−1 −
D0�−1k2

�1 − i��−1�
� . �23�

It is interesting to notice that by expanding Eq. �23� up to
first order in � and second order in k and taking into account
Eq. �13�, we obtain


�k,�� � 
0	1 +
5

2
��1 +

i�

�
+ k2D0

�
�
�1 + Sc̃−1�1 + ��� ,

�24�

where Sc̃�
0 / ��0D0� is the Schmidt number for the Brown-
ian gas diffusing in the solvent. Equation �24� is an expres-
sion similar to that reported in Ref. �36�. Nonetheless, Eq.
�24� includes corrections due to the finite size of the par-

ticles, which are not included in the theories of Refs. �8,36�.
To analyze the frequency behavior of Eq. �23�, it can be

recast in a more convenient form by using the dispersion
relation k2=−i

��0


0
, which can be obtained from the Navier-

Stokes equations �28,30�. Substituting the last expression
into Eq. �23� and using dimensionless variables defined by

�̃ �
�

�
, k̃2 �

D0

�
k2, and 
̃�k̃,�̃� �


�k,��

 fs

, �25�

we obtain the following expression for the dynamic viscos-
ity:


̃��̃� � 1 +
5

2
�

1

1 − i�̃ + i
�̃

Sc̃�1 − i�̃�

, �26�

which only depends on the dimensionless frequency �̃, the

volume fraction �, and the Schmidt number Sc̃. The term

containing Sc̃ represents a contribution arising from the cou-
pling between diffusion and viscosity. Note that our defini-
tion of the Schmidt number is related to that used in Ref.

FIG. 1. �a� Real and �b� imaginary parts of the normalized dy-

namic viscosity as a function of �̃ for Sc̃�1. Volume fractions as
indicated in the figures.
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�37� by means of the relation Sc̃=ScDf /D0, where Df is the
fluid self-diffusion coefficient. For a gas, Sc�1 �this value is
also used in numerical simulations of colloidal systems as,
for example, the one of Ref. �15��, whereas for a liquid,
Sc�1, and since for a colloidal suspension in general

Df �D0, then Sc̃�1. Therefore, the terms containing Sc̃−1 in
Eqs. �13� and �26� can be neglected and the expression for
the dynamic viscosity reduces to a form similar to that of
Ref. �8�, the differences being the finite-size contributions
contained in 
 fs, the explicit dependence on the volume frac-
tion, and that the characteristic relaxation time is given by
�−1 instead of �D=a2 /D0.

In Fig. 1, we show the real 
̃���̃� and imaginary 
̃���̃�
parts of the complex dynamic viscosity 
̃��̃� as a function of
log �̃ for different values of the volume fraction and consid-

ering Sc̃�1. Notice that 
̃��̃� has the usual behavior of a
relaxation process with only one relaxation time �8�. From
Eq. �26� it can be seen that the ratio �
̃���̃�−1� / �
̃0�−1�,
with 
̃0�� 
̃���̃=0�, will depend only on the dimensionless
parameter �̃. The imaginary term can be reduced in the same
manner 
̃���̃� / �
̃0�−1�. In Fig. 2, we plot the reduced viscos-
ity as a function of �̃. In addition to the usual case of very

large Schmidt numbers �solid line�, we have also explored
what would be the consequences when the Schmidt number

is of the order of unity. For Sc̃=1 �dashed line�, the real part
of the viscosity presents a hump near �̃=1. This character-

istic appears for values of Sc̃ in the range �1,2+�3�, whereas

for Sc̃�2+�3 the hump is not present �for Sc̃�1, the imagi-
nary part of 
̃��̃� takes only positive values�. At intermediate
frequencies, 
̃���̃� decays following the law �̃−2, indepen-

dently of the value of Sc̃. This is a typical behavior for pro-
cesses with only one relaxation time �8�. On the other hand,
the imaginary part of the viscosity has a bell-shaped form for

Sc̃�1, whereas for Sc̃=1 it becomes asymmetric and more
stretched. It is important to notice that for intermediate fre-
quencies, 
̃���̃� decays as �̃−1, also a usual behavior for
processes with only one relaxation time. The low-frequency
region of the dynamic viscosity curves deserves also a de-
tailed analysis. In this frequency region, 
̃���̃� grows as �̃,
independently of the value of the Schmidt number, except for

Sc̃=1, where the curve grows as �̃3.

FIG. 2. �a� Real and �b� imaginary parts of the reduced dynamic

viscosity as a function of �̃. The solid line corresponds to Sc̃�1

and the dashed line corresponds to Sc̃=1.

FIG. 3. �a� Real and �b� imaginary parts of the reduced dynamic
viscosity as a function of �̃, for a distribution of relaxing processes.

The solid line corresponds to Sc̃1�1 and the dashed line corre-

sponds to Sc̃1=1. The number of relaxing processes considered was
N=1000.
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Finally, it is important to point out that it has been experi-
mentally observed that for intermediate frequencies, both the
real and imaginary parts of the viscosity decay as �−1/2 �8�.
Such a frequency behavior can be modeled by assuming a
distribution of relaxation times �p. In this case, the viscosity
can be written as


̃��� = 1 + �
p=1

N
Gp�p

1 − i��p + i
��p

Sc̃�1 − i��p�

, �27�

where N is the number of relaxation processes involved. Gp
is a constant relaxation strength of the relaxation process
with relaxation time �p, given by a distribution of the form

�p = �1p−�, � = 2, �28�

with �1 the longest relaxation time �8�. For a noninteracting
hard-sphere system, this would correspond to a distribution
on the size of the particles ap=a1p�, or equivalently,

Sc̃p=Sc̃1p�. With this size distribution our results for the
viscosity lead to the same power-law decay on frequency
�−1/2. In Fig. 3, we show this behavior for two different
values of the Schmidt number corresponding to the longest

relaxation time �1, Sc̃1=1 and Sc̃1�1. We notice that the
intermediate frequency power-law dependency on frequency
is not altered by this choice, but at low frequencies
differences show up for 
̃����. A different power law

for the size distribution will modify the behavior of the
viscosity.

IV. CONCLUSIONS

We have proposed a model for the dynamics of colloidal
suspensions based on a mesoscopic hydrodynamic descrip-
tion derived by applying the rules of mesoscopic nonequilib-
rium thermodynamics. We have derived the viscosity of a
monodisperse hard-sphere system that includes effects due to
the finite size of the colloidal particles. It has been shown
that the normalized dynamic viscosity depends only on three

dimensionless parameters: the Schmidt number Sc̃, the vol-
ume fraction �, and the normalized frequency �̃. Also, it
presents power-law exponents for different regions of the
frequency space. Our results show that the mesoscopic ap-
proach leads to results that are consistent with previous the-
oretical descriptions derived by using the generalized hydro-
dynamics theory. We expect that the present model may be
extended to a wider class of suspensions including particles
with internal structure.
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